
SECURITY ADVISORY

Improper Privilege Management in Grails
Spring Security Core <= 5.1.0
CVE-2022-41923
2023.03.21

BENJAMIN SEPE
ADRIEN PETER

Vulnerability description
1. Pre sentation of Grails Spring Security Core
The open source Grails® Framework supported by the Grails Foundation is used to build web
applications with the Groovy programming language. The core framework is very extensible and there
are numerous plugins available that provide easy integration of add-on features.1

The Grails Spring Security plugin simplifies the integration of Spring Security into Grails Framework
applications. The plugin provides sensible defaults with many configuration options for customization.
Nearly everything is configurable or replaceable in the plugin and in Spring Security itself, which makes
extensive use of interfaces.2

2. Iss ue
Synacktiv discovered an improper parsing of resource URIs in Grails Spring Security Core’s authorization
system that allows an authenticated user to bypass some applications’ authorization requirements.

3. Mit igation
Upgrade to one of the following plugin versions:

 3.3.2

 4.0.5

 5.1.1

4. Aff ected versions
The following plugin versions are affected:

 1.x

 2.x

 >=3.0.0 <3.3.2

 >=4.0.0 <4.0.5

 >=5.0.0 <5.1.1

1 https://grails.org/
2 https://grails.github.io/grails-spring-security-core/5.0.0-RC1/index.html

 02 | 07

https://grails.org/
https://grails.github.io/grails-spring-security-core/5.0.0-RC1/index.html

5. Tim eline

Date Description
2022.11 Advisory sent to Grails Foundation

2022.11.10 Patches deployed on GitHub.com

2022.11.22 Advisory published on the Grails Framework blog:
https://grails.org/blog/2022-11-22-ss-plugin-auth-cve.html

2023.03.21 Public release

6. Spe cial thanks
Synacktiv would like to thank the Grails Foundation team for their quick response to the vulnerability
and their feedback for this advisory.

7.

03 | 07

https://grails.org/blog/2022-11-22-ss-plugin-auth-cve.html

Technical description
8. Des cription
The Grails Spring Security Core plugin allows the application’s developer to define role requirements for
each web application controller. In the following example, ROLE_USER and ROLE_ADMIN have been
created, corresponding to two different level of privileges. A SecureController has been defined,
containing a /secure path routing to the default index action and requires the ROLE_USER role, and
/secure/admin that requires the ROLE_ADMIN role:

$ cat SecureController.groovy
@Secured('ROLE_USER')

class SecureController {
 def index() {

 render 'User access only'
 }

 @Secured('ROLE_ADMIN')
 def admin() {

 render 'Admin access only'
 }

}
[...]

When authenticated with the ROLE_USER role, access to the /secure/admin page is indeed denied:

$ curl -i http://localhost:8080/secure/admin -H 'Cookie: JSESSIONID=[...]'
HTTP/1.1 403

<div class="errors">Sorry, you're not authorized to view this page.</div>
[...]

However, inserting a semicolon (;) at a specific position in the path allows accessing the restricted
page, bypassing the role requirement.

$ curl -i 'http://localhost:8080/secure;/admin' -H 'Cookie: JSESSIONID=[...]'

HTTP/1.1 200
[...]

Admin access only

The presence of a semicolon (;) character before the /admin endpoint allowed to bypass the endpoint’s
authorization requirements, and instead inherit the ROLE_USER requirement for the /secure endpoint.

 04 | 07

9. Imp act
An attacker with a valid, low-privileged account on a web application using the plugin could use this
vulnerability to bypass its privilege requirements.

Indeed, exploiting this vulnerability grants the user access to all methods of a given controller, provided
that they are authorized to access the controller’s default action endpoint (which by default is the
index action).

10. Det ailed analysis
When used with some containers, the request URL received by the Grails Framework may include a
semicolon to pass the jsessionid parameter. For example:

http://mywebsite.com/context/foo;jsessionid=A3294FBE42?a=b

This notation is called Matrix Parameters. A Matrix URI is written using semicolons to delimitate the
path resources.

/context/foo;f1=WWW/bar;s1=1;s2=2/index.html;i1=1;i2=2

The top-level resource may contain parameters not applying to the sub-level resources.

To handle the case when a container passes the jsessionid parameter, the Grails Spring Security Core
plugin strips everything after the first semicolon when extracting the context path of the request:

File: plugin/src/main/groovy/grails/plugin/springsecurity/web/access/intercept/
AbstractFilterInvocationDefinition.groovy@77132c1

176: protected String calculateUri(HttpServletRequest request) {

177: String url = request.requestURI.substring(request.contextPath.length())
178: int semicolonIndex = url.indexOf(';')

179: semicolonIndex == -1 ? url : url.substring(0, semicolonIndex)

180: }

The url variable is then used to decide whether the user has the rights to access it or not.

Consequently, when an attacker includes a semicolon in the request’s path, the controller authorization
only applies to the first part of the URI instead of the whole path.

Thus, as demonstrated in the previous section, a request to the /secure;/admin path is parsed by the
plugin as a request to /secure, which is in this case is configured to be accessible by an unprivileged
user. The Grails Framework then serves the privileged /secure;/admin page.

05 | 07

11. Pat ch analysis
The following patches were committed to fix the issue:

 On 11/10/2022, included in release 5.1.1:
https://github.com/grails/grails-spring-security-core/pull/806/commits/
bf69e3676948a78e82df570b958aaba5cbcfa3c2

 On 11/13/2022, included in release 4.0.5:
https://github.com/grails/grails-spring-security-core/pull/824/commits/
e0795e1e197f28559e22cd42e3b6372ca7753cc3

 On 11/17/2022, included in release 3.3.2:
https://github.com/grails/grails-spring-security-core/pull/837/commits/
cf87f21a11b046ee5e734f8a4b1932fa4c2225ef

The code now uses the getRequestUri method of the urlPathHelper class from the Spring Framework
library:

File: plugin/src/main/groovy/grails/plugin/springsecurity/web/access/intercept/
AbstractFilterInvocationDefinition.groovy@890ebac

18: import org.springframework.web.util.UrlPathHelper

[...]
96: protected String determineUrl(FilterInvocation filterInvocation) {

97: final HttpServletRequest request = filterInvocation.request
98: lowercaseAndStripQuerystring
stripContextPath(urlPathHelper.getRequestUri(request), request)

99: }

This method states in its documentation that “some containers [...] include ";" strings like ";jsessionid" in
the URI. This method cuts off such incorrect appendices.”

Trying to reproduce the previous example on version 5.1.1 of the plugin demonstrates that the
vulnerability is indeed fixed:

$ curl -i 'http://localhost:8080/secure;/admin' -H 'Cookie: JSESSIONID=[...]'

HTTP/1.1 403
[...]

<div class="errors">Sorry, you're not authorized to view this page.</div>

 06 | 07

https://github.com/grails/grails-spring-security-core/pull/837/commits/cf87f21a11b046ee5e734f8a4b1932fa4c2225ef
https://github.com/grails/grails-spring-security-core/pull/837/commits/cf87f21a11b046ee5e734f8a4b1932fa4c2225ef
https://github.com/grails/grails-spring-security-core/pull/824/commits/e0795e1e197f28559e22cd42e3b6372ca7753cc3
https://github.com/grails/grails-spring-security-core/pull/824/commits/e0795e1e197f28559e22cd42e3b6372ca7753cc3
https://github.com/grails/grails-spring-security-core/pull/806/commits/bf69e3676948a78e82df570b958aaba5cbcfa3c2
https://github.com/grails/grails-spring-security-core/pull/806/commits/bf69e3676948a78e82df570b958aaba5cbcfa3c2

01 45 79 74 75

contact@synacktiv.com

5 boulevard Montmartre

75002 – PARIS

www.synacktiv.com

	Vulnerability description
	1. Presentation of Grails Spring Security Core
	2. Issue
	3. Mitigation
	4. Affected versions
	5. Timeline
	6. Special thanks
	Synacktiv would like to thank the Grails Foundation team for their quick response to the vulnerability and their feedback for this advisory.

	Technical description
	8. Description
	9. Impact
	10. Detailed analysis
	11. Patch analysis

